博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
一致性Hash 分析和实现
阅读量:5892 次
发布时间:2019-06-19

本文共 17911 字,大约阅读时间需要 59 分钟。

一致性Hash 分析和实现

---

title: 1.一致性Hash
date: 2018-02-05 12:03:22
categories:
- 一致性Hash
---

一下分析来源于网络总结:算法参照自己实现,共参考和指正。

一致性Hash算法背景

  一致性哈希算法在1997年由麻省理工学院的Karger等人在解决分布式Cache中提出的,设计目标是为了解决因特网中的热点(Hot spot)问题,初衷和CARP十分类似。一致性哈希修正了CARP使用的简单哈希算法带来的问题,使得DHT可以在P2P环境中真正得到应用。

  但现在一致性hash算法在分布式系统中也得到了广泛应用,研究过memcached缓存数据库的人都知道,memcached服务器端本身不提供分布式cache的一致性,而是由客户端来提供,具体在计算一致性hash时采用如下步骤:

  • - 首先求出memcached服务器(节点)的哈希值,并将其配置到0~232的圆(continuum)上。
  • - 然后采用同样的方法求出存储数据的键的哈希值,并映射到相同的圆上。
  • - 然后从数据映射到的位置开始顺时针查找,将数据保存到找到的第一个服务器上。如果超过232仍然找不到服务器,就会保存到第一台memcached服务器上。

从上图的状态中添加一台memcached服务器。余数分布式算法由于保存键的服务器会发生巨大变化而影响缓存的命中率,但Consistent Hashing中,只有在园(continuum)上增加服务器的地点逆时针方向的第一台服务器上的键会受到影响,如下图所示:

原理

基本概念

简单来说,一致性哈希将整个哈希值空间组织成一个虚拟的圆环,如假设某哈希函数H的值空间为0-2^32-1(即哈希值是一个32位无符号整形),整个哈希空间环如下:

整个空间按顺时针方向组织。0和232-1在零点中方向重合。

  下一步将各个服务器使用Hash进行一个哈希,具体可以选择服务器的ip或主机名作为关键字进行哈希,这样每台机器就能确定其在哈希环上的位置,这里假设将上文中四台服务器使用ip地址哈希后在环空间的位置如下:

接下来使用如下算法定位数据访问到相应服务器:将数据key使用相同的函数Hash计算出哈希值,并确定此数据在环上的位置,从此位置沿环顺时针“行走”,第一台遇到的服务器就是其应该定位到的服务器。

  例如我们有Object A、Object B、Object C、Object D四个数据对象,经过哈希计算后,在环空间上的位置如下:

根据一致性哈希算法,数据A会被定为到Node A上,B被定为到Node B上,C被定为到Node C上,D被定为到Node D上。

下面分析一致性哈希算法的容错性和可扩展性。现假设Node C不幸宕机,可以看到此时对象A、B、D不会受到影响,只有C对象被重定位到Node D。一般的,在一致性哈希算法中,如果一台服务器不可用,则受影响的数据仅仅是此服务器到其环空间中前一台服务器(即沿着逆时针方向行走遇到的第一台服务器)之间数据,其它不会受到影响。

下面考虑另外一种情况,如果在系统中增加一台服务器Node X,如下图所示:

此时对象Object A、B、D不受影响,只有对象C需要重定位到新的Node X 。一般的,在一致性哈希算法中,如果增加一台服务器,则受影响的数据仅仅是新服务器到其环空间中前一台服务器(即沿着逆时针方向行走遇到的第一台服务器)之间数据,其它数据也不会受到影响。

综上所述,一致性哈希算法对于节点的增减都只需重定位环空间中的一小部分数据,具有较好的容错性和可扩展性。

算法实现:

1 package com.maozw.algorithm; 2  3 import java.util.SortedMap; 4 import java.util.TreeMap; 5  6 /** 7  * @author MAOZW 8  * @Description: 不带虚拟节点的一致性Hash算法 9  * @date 2018/11/22 16:3010  */11 public class ConsistentHashNoNode {12 13     /**14      * 初始化 key表示服务器的hash值,value表示服务器的名称15      */16     private static SortedMap
serverHashMap = new TreeMap
();17 18 public static String getServer(String data) {19 return serverHashMap.get(serverHashMap.tailMap(hash(data)).firstKey());20 }21 22 /**23 * 构建hash环24 * @param servers25 */26 public ConsistentHashNoNode(String[] servers) {27 for (int i = 0; i < servers.length; i++) {28 int hash = hash(servers[i]);29 serverHashMap.put(hash, servers[i]);30 }31 }32 33 /**34 * FNV1_32_HASH 百度35 * @param str36 * @return37 */38 public static int hash(String str) {39 final int p = 16777619;40 int hash = (int)2166136261L;41 for (int i = 0; i < str.length(); i++) {42 hash = (hash ^ str.charAt(i)) * p;43 }44 hash += hash << 13;45 hash ^= hash >> 7;46 hash += hash << 3;47 hash ^= hash >> 17;48 hash += hash << 5;49 return Math.abs(hash);50 }51 52 public static void main(String[] args) {53 //构建服务器列表54 String[] servers = {"192.168.1.0:098", "192.168.1.0:099", "192.168.1.0:100","192.168.1.0:111", "192.168.1.1:112", "192.168.1.2:113", "192.168.0.3:114", "192.168.0.4:115"};55 new ConsistentHashNoNode(servers);56 for (int i = 0; i < 10; i++) {57 System.out.println("data : " + i + ", hash " + hash(String.valueOf(i)) + " >>>>>>> " + getServer(String.valueOf(i)));58 }59 }60 }
输出结果:
data : 0, hash 1360261864 >>>>>>> 192.168.0.4:115data : 1, hash 1081142246 >>>>>>> 192.168.0.3:114data : 2, hash 1310673766 >>>>>>> 192.168.0.4:115data : 3, hash 895667540 >>>>>>> 192.168.0.3:114data : 4, hash 1066967047 >>>>>>> 192.168.0.3:114data : 5, hash 1039214538 >>>>>>> 192.168.0.3:114data : 6, hash 853429834 >>>>>>> 192.168.0.3:114data : 7, hash 679338660 >>>>>>> 192.168.0.3:114data : 8, hash 570677376 >>>>>>> 192.168.0.3:114data : 9, hash 1632757952 >>>>>>> 192.168.1.0:098

 

另外,一致性哈希算法在服务节点太少时,容易因为节点分部不均匀而造成数据倾斜问题。例如系统中只有两台服务器,其环分布如下,

 

此时必然造成大量数据集中到Node A上,而只有极少量会定位到Node B上。为了解决这种数据倾斜问题,一致性哈希算法引入了虚拟节点机制,即对每一个服务节点计算多个哈希,每个计算结果位置都放置一个此服务节点,称为虚拟节点。具体做法可以在服务器ip或主机名的后面增加编号来实现。例如上面的情况,可以为每台服务器计算三个虚拟节点,于是可以分别计算 “Node A#1”、“Node A#2”、“Node A#3”、“Node B#1”、“Node B#2”、“Node B#3”的哈希值,于是形成六个虚拟节点:

同时数据定位算法不变,只是多了一步虚拟节点到实际节点的映射,例如定位到“Node A#1”、“Node A#2”、“Node A#3”三个虚拟节点的数据均定位到Node A上。这样就解决了服务节点少时数据倾斜的问题。在实际应用中,通常将虚拟节点数设置为32甚至更大,因此即使很少的服务节点也能做到相对均匀的数据分布。

算法实现:

 

1 package com.maozw.algorithm;  2   3 import java.util.*;  4   5 /**  6  * @author MAOZW 分隔符  7  * @Description: 带虚拟节点的一致性Hash算法  8  * @date 2018/11/22 16:30  9  */ 10 public class ConsistentHashWithNode { 11  12     private static final String VIR_NODE_NAME_SEPARATOR = "@VirNode"; 13  14     private static List
instanceInfo = new LinkedList<>(); 15 16 /** 17 * 初始化虚拟节点 key表示服务器虚拟节点的hash值,value表示服务器虚拟节点的名称 18 */ 19 private static SortedMap
serverHashMap = new TreeMap
(); 20 /** 21 * 设置每台服务器需要的虚拟节点 22 */ 23 private static final int VIRTUAL_NODES = 10; 24 25 /** 26 * 构建hash环 27 * @param servers 28 */ 29 public ConsistentHashWithNode(String[] servers) { 30 //首先本地缓存一份实例信息 31 instanceInfo.addAll(Arrays.asList(servers)); 32 instanceInfo.forEach(instance -> { 33 for (int i = 0; i < VIRTUAL_NODES; i++) { 34 //构建虚拟节点 35 String virNodeName = instance + VIR_NODE_NAME_SEPARATOR + String.valueOf(i); 36 serverHashMap.put(hash(virNodeName), virNodeName); 37 } 38 }); 39 } 40 41 public static void addNode(String servers) { 42 //首先本地缓存一份实例信息 43 instanceInfo.addAll(Arrays.asList(servers)); 44 instanceInfo.forEach(instance -> { 45 for (int i = 0; i < VIRTUAL_NODES; i++) { 46 //构建虚拟节点 47 String virNodeName = instance + VIR_NODE_NAME_SEPARATOR + String.valueOf(i); 48 serverHashMap.put(hash(virNodeName), virNodeName); 49 } 50 }); 51 } 52 53 /** 54 * 根据数据获取真实存储服务节点 55 * @param data 56 * @return 57 */ 58 public static String getServer(String data) { 59 Integer firstKey; 60 SortedMap
subSortedMap = serverHashMap.tailMap(hash(data)); 61 if (subSortedMap.isEmpty()){ 62 firstKey = serverHashMap.firstKey(); 63 }else 64 firstKey = subSortedMap.firstKey(); 65 String virNodeName = serverHashMap.get(firstKey); 66 return virNodeName.substring(0, virNodeName.indexOf(VIR_NODE_NAME_SEPARATOR)); 67 } 68 69 /** 70 * FNV1_32_HASH 百度 71 * @param str 72 * @return 73 */ 74 public static int hash(String str) { 75 final int p = 16777619; 76 int hash = (int)2166136261L; 77 for (int i = 0; i < str.length(); i++) { 78 hash = (hash ^ str.charAt(i)) * p; 79 } 80 hash += hash << 13; 81 hash ^= hash >> 7; 82 hash += hash << 3; 83 hash ^= hash >> 17; 84 hash += hash << 5; 85 return Math.abs(hash); 86 } 87 88 public static void main(String[] args) { 89 //构建服务器列表 90 String[] servers = {"192.168.1.0:098", "192.168.1.0:099", "192.168.1.0:100","192.168.1.0:111", "192.168.1.1:112", "192.168.1.2:113", "192.168.0.3:114", "192.168.0.4:115"}; 91 new ConsistentHashWithNode(servers); 92 for (int i = 0; i < 100; i++) { 93 //动态增删节点 94 if(i%10 == 0){ 95 addNode("192.168.0.5:" + String.valueOf(i)); 96 } 97 System.out.println("data : " + i + ", hash " + hash(String.valueOf(i)) + " >>>>>>> " + getServer(String.valueOf(i))); 98 } 99 }100 }

输出结果:

"C:\Program Files\Java\jdk1.8.0_121\bin\java" "-javaagent:C:\Program Files\JetBrains\IntelliJ IDEA 2017.2.4\lib\idea_rt.jar=56902:C:\Program Files\JetBrains\IntelliJ IDEA 2017.2.4\bin" -Dfile.encoding=UTF-8 -classpath "C:\Program Files\Java\jdk1.8.0_121\jre\lib\charsets.jar;C:\Program Files\Java\jdk1.8.0_121\jre\lib\deploy.jar;C:\Program Files\Java\jdk1.8.0_121\jre\lib\ext\access-bridge-64.jar;C:\Program Files\Java\jdk1.8.0_121\jre\lib\ext\cldrdata.jar;C:\Program Files\Java\jdk1.8.0_121\jre\lib\ext\dnsns.jar;C:\Program Files\Java\jdk1.8.0_121\jre\lib\ext\jaccess.jar;C:\Program Files\Java\jdk1.8.0_121\jre\lib\ext\jfxrt.jar;C:\Program Files\Java\jdk1.8.0_121\jre\lib\ext\localedata.jar;C:\Program Files\Java\jdk1.8.0_121\jre\lib\ext\nashorn.jar;C:\Program Files\Java\jdk1.8.0_121\jre\lib\ext\sunec.jar;C:\Program Files\Java\jdk1.8.0_121\jre\lib\ext\sunjce_provider.jar;C:\Program Files\Java\jdk1.8.0_121\jre\lib\ext\sunmscapi.jar;C:\Program Files\Java\jdk1.8.0_121\jre\lib\ext\sunpkcs11.jar;C:\Program Files\Java\jdk1.8.0_121\jre\lib\ext\zipfs.jar;C:\Program Files\Java\jdk1.8.0_121\jre\lib\javaws.jar;C:\Program Files\Java\jdk1.8.0_121\jre\lib\jce.jar;C:\Program Files\Java\jdk1.8.0_121\jre\lib\jfr.jar;C:\Program Files\Java\jdk1.8.0_121\jre\lib\jfxswt.jar;C:\Program Files\Java\jdk1.8.0_121\jre\lib\jsse.jar;C:\Program Files\Java\jdk1.8.0_121\jre\lib\management-agent.jar;C:\Program Files\Java\jdk1.8.0_121\jre\lib\plugin.jar;C:\Program Files\Java\jdk1.8.0_121\jre\lib\resources.jar;C:\Program Files\Java\jdk1.8.0_121\jre\lib\rt.jar;D:\data\baiduyun\creditnet-cloud-parent\base-agent\target\classes;D:\maven\maven_resource\javassist\javassist\3.12.1.GA\javassist-3.12.1.GA.jar;D:\maven\maven_resource\org\springframework\boot\spring-boot-starter-web\1.5.11.RELEASE\spring-boot-starter-web-1.5.11.RELEASE.jar;D:\maven\maven_resource\org\springframework\boot\spring-boot-starter\1.5.11.RELEASE\spring-boot-starter-1.5.11.RELEASE.jar;D:\maven\maven_resource\org\springframework\boot\spring-boot\1.5.11.RELEASE\spring-boot-1.5.11.RELEASE.jar;D:\maven\maven_resource\org\springframework\boot\spring-boot-autoconfigure\1.5.11.RELEASE\spring-boot-autoconfigure-1.5.11.RELEASE.jar;D:\maven\maven_resource\org\springframework\boot\spring-boot-starter-logging\1.5.11.RELEASE\spring-boot-starter-logging-1.5.11.RELEASE.jar;D:\maven\maven_resource\ch\qos\logback\logback-classic\1.1.11\logback-classic-1.1.11.jar;D:\maven\maven_resource\ch\qos\logback\logback-core\1.1.11\logback-core-1.1.11.jar;D:\maven\maven_resource\org\slf4j\slf4j-api\1.7.25\slf4j-api-1.7.25.jar;D:\maven\maven_resource\org\slf4j\jcl-over-slf4j\1.7.25\jcl-over-slf4j-1.7.25.jar;D:\maven\maven_resource\org\slf4j\jul-to-slf4j\1.7.25\jul-to-slf4j-1.7.25.jar;D:\maven\maven_resource\org\slf4j\log4j-over-slf4j\1.7.25\log4j-over-slf4j-1.7.25.jar;D:\maven\maven_resource\org\springframework\spring-core\4.3.15.RELEASE\spring-core-4.3.15.RELEASE.jar;D:\maven\maven_resource\org\yaml\snakeyaml\1.17\snakeyaml-1.17.jar;D:\maven\maven_resource\org\springframework\boot\spring-boot-starter-tomcat\1.5.11.RELEASE\spring-boot-starter-tomcat-1.5.11.RELEASE.jar;D:\maven\maven_resource\org\apache\tomcat\embed\tomcat-embed-core\8.5.29\tomcat-embed-core-8.5.29.jar;D:\maven\maven_resource\org\apache\tomcat\tomcat-annotations-api\8.5.29\tomcat-annotations-api-8.5.29.jar;D:\maven\maven_resource\org\apache\tomcat\embed\tomcat-embed-el\8.5.29\tomcat-embed-el-8.5.29.jar;D:\maven\maven_resource\org\apache\tomcat\embed\tomcat-embed-websocket\8.5.29\tomcat-embed-websocket-8.5.29.jar;D:\maven\maven_resource\org\hibernate\hibernate-validator\5.3.6.Final\hibernate-validator-5.3.6.Final.jar;D:\maven\maven_resource\javax\validation\validation-api\1.1.0.Final\validation-api-1.1.0.Final.jar;D:\maven\maven_resource\org\jboss\logging\jboss-logging\3.3.2.Final\jboss-logging-3.3.2.Final.jar;D:\maven\maven_resource\com\fasterxml\classmate\1.3.4\classmate-1.3.4.jar;D:\maven\maven_resource\com\fasterxml\jackson\core\jackson-databind\2.8.11.1\jackson-databind-2.8.11.1.jar;D:\maven\maven_resource\com\fasterxml\jackson\core\jackson-annotations\2.8.0\jackson-annotations-2.8.0.jar;D:\maven\maven_resource\com\fasterxml\jackson\core\jackson-core\2.8.11\jackson-core-2.8.11.jar;D:\maven\maven_resource\org\springframework\spring-web\4.3.15.RELEASE\spring-web-4.3.15.RELEASE.jar;D:\maven\maven_resource\org\springframework\spring-beans\4.3.15.RELEASE\spring-beans-4.3.15.RELEASE.jar;D:\maven\maven_resource\org\springframework\spring-context\4.3.15.RELEASE\spring-context-4.3.15.RELEASE.jar;D:\maven\maven_resource\org\springframework\spring-webmvc\4.3.15.RELEASE\spring-webmvc-4.3.15.RELEASE.jar;D:\maven\maven_resource\org\springframework\spring-expression\4.3.15.RELEASE\spring-expression-4.3.15.RELEASE.jar;D:\maven\maven_resource\org\springframework\boot\spring-boot-starter-aop\1.5.11.RELEASE\spring-boot-starter-aop-1.5.11.RELEASE.jar;D:\maven\maven_resource\org\springframework\spring-aop\4.3.15.RELEASE\spring-aop-4.3.15.RELEASE.jar;D:\maven\maven_resource\org\aspectj\aspectjweaver\1.8.13\aspectjweaver-1.8.13.jar;D:\maven\maven_resource\org\javassist\javassist\3.22.0-CR2\javassist-3.22.0-CR2.jar" com.maozw.algorithm.ConsistentHashWithNodedata : 0, hash 1360261864 >>>>>>> 192.168.0.4:115data : 1, hash 1081142246 >>>>>>> 192.168.1.0:111data : 2, hash 1310673766 >>>>>>> 192.168.1.0:111data : 3, hash 895667540 >>>>>>> 192.168.1.0:098data : 4, hash 1066967047 >>>>>>> 192.168.1.0:111data : 5, hash 1039214538 >>>>>>> 192.168.1.0:111data : 6, hash 853429834 >>>>>>> 192.168.1.0:111data : 7, hash 679338660 >>>>>>> 192.168.1.1:112data : 8, hash 570677376 >>>>>>> 192.168.0.4:115data : 9, hash 1632757952 >>>>>>> 192.168.0.5:0data : 10, hash 1740656752 >>>>>>> 192.168.1.0:098data : 11, hash 2006937980 >>>>>>> 192.168.0.3:114data : 12, hash 1796605027 >>>>>>> 192.168.1.2:113data : 13, hash 1784583057 >>>>>>> 192.168.1.2:113data : 14, hash 2038748830 >>>>>>> 192.168.0.3:114data : 15, hash 2102931218 >>>>>>> 192.168.1.2:113data : 16, hash 1773944215 >>>>>>> 192.168.1.2:113data : 17, hash 1484764485 >>>>>>> 192.168.0.5:10data : 18, hash 1806306984 >>>>>>> 192.168.0.3:114data : 19, hash 1627633430 >>>>>>> 192.168.1.0:100data : 20, hash 769227900 >>>>>>> 192.168.1.2:113data : 21, hash 2093235260 >>>>>>> 192.168.0.5:20data : 22, hash 965020188 >>>>>>> 192.168.1.0:098data : 23, hash 1284791438 >>>>>>> 192.168.1.0:100data : 24, hash 1624147572 >>>>>>> 192.168.1.0:100data : 25, hash 1813276176 >>>>>>> 192.168.1.0:099data : 26, hash 1240165918 >>>>>>> 192.168.1.0:100data : 27, hash 1443113986 >>>>>>> 192.168.0.5:10data : 28, hash 848195239 >>>>>>> 192.168.1.0:111data : 29, hash 487229693 >>>>>>> 192.168.0.5:0data : 30, hash 1179882046 >>>>>>> 192.168.0.5:20data : 31, hash 687519996 >>>>>>> 192.168.1.1:112data : 32, hash 1347314987 >>>>>>> 192.168.0.4:115data : 33, hash 1252150144 >>>>>>> 192.168.0.5:30data : 34, hash 1243961826 >>>>>>> 192.168.0.5:30data : 35, hash 1331369343 >>>>>>> 192.168.0.4:115data : 36, hash 382702589 >>>>>>> 192.168.1.0:111data : 37, hash 1333159807 >>>>>>> 192.168.0.4:115data : 38, hash 1629520602 >>>>>>> 192.168.1.0:100data : 39, hash 600512651 >>>>>>> 192.168.0.4:115data : 40, hash 595583100 >>>>>>> 192.168.0.4:115data : 41, hash 879405290 >>>>>>> 192.168.0.5:20data : 42, hash 1852330956 >>>>>>> 192.168.1.0:099data : 43, hash 298372213 >>>>>>> 192.168.0.5:30data : 44, hash 1200283293 >>>>>>> 192.168.0.5:10data : 45, hash 1372130372 >>>>>>> 192.168.0.5:40data : 46, hash 347117451 >>>>>>> 192.168.1.2:113data : 47, hash 1882437695 >>>>>>> 192.168.1.2:113data : 48, hash 999071944 >>>>>>> 192.168.1.0:111data : 49, hash 365185474 >>>>>>> 192.168.1.2:113data : 50, hash 817297870 >>>>>>> 192.168.1.2:113data : 51, hash 1273490745 >>>>>>> 192.168.1.0:100data : 52, hash 13188041 >>>>>>> 192.168.0.5:30data : 53, hash 983610652 >>>>>>> 192.168.0.5:0data : 54, hash 1433440743 >>>>>>> 192.168.0.5:10data : 55, hash 675921773 >>>>>>> 192.168.0.5:50data : 56, hash 2096618612 >>>>>>> 192.168.0.5:20data : 57, hash 1242863439 >>>>>>> 192.168.0.5:30data : 58, hash 506782701 >>>>>>> 192.168.0.5:0data : 59, hash 1419244973 >>>>>>> 192.168.0.5:10data : 60, hash 1671023507 >>>>>>> 192.168.1.1:112data : 61, hash 1696027153 >>>>>>> 192.168.1.0:100data : 62, hash 2023040435 >>>>>>> 192.168.0.3:114data : 63, hash 806852734 >>>>>>> 192.168.0.5:60data : 64, hash 1375292931 >>>>>>> 192.168.0.5:40data : 65, hash 1167635221 >>>>>>> 192.168.1.2:113data : 66, hash 1414244172 >>>>>>> 192.168.0.5:40data : 67, hash 1665196834 >>>>>>> 192.168.1.0:111data : 68, hash 1422126430 >>>>>>> 192.168.0.5:10data : 69, hash 1758210714 >>>>>>> 192.168.0.5:40data : 70, hash 852634916 >>>>>>> 192.168.1.0:111data : 71, hash 659904949 >>>>>>> 192.168.0.4:115data : 72, hash 2068039778 >>>>>>> 192.168.1.1:112data : 73, hash 295785540 >>>>>>> 192.168.0.5:30data : 74, hash 477451518 >>>>>>> 192.168.0.5:70data : 75, hash 1128963530 >>>>>>> 192.168.0.5:0data : 76, hash 436692773 >>>>>>> 192.168.0.5:70data : 77, hash 2114685002 >>>>>>> 192.168.0.5:10data : 78, hash 2037055164 >>>>>>> 192.168.0.3:114data : 79, hash 305399288 >>>>>>> 192.168.0.5:30data : 80, hash 637111365 >>>>>>> 192.168.1.0:100data : 81, hash 824524375 >>>>>>> 192.168.1.2:113data : 82, hash 219099783 >>>>>>> 192.168.0.5:20data : 83, hash 698561011 >>>>>>> 192.168.1.1:112data : 84, hash 838744949 >>>>>>> 192.168.1.2:113data : 85, hash 494853706 >>>>>>> 192.168.0.5:0data : 86, hash 828902150 >>>>>>> 192.168.1.2:113data : 87, hash 392055866 >>>>>>> 192.168.0.5:50data : 88, hash 439746725 >>>>>>> 192.168.0.5:70data : 89, hash 336078296 >>>>>>> 192.168.0.5:30data : 90, hash 524049458 >>>>>>> 192.168.0.5:10data : 91, hash 1741707214 >>>>>>> 192.168.0.5:70data : 92, hash 1432943238 >>>>>>> 192.168.0.5:80data : 93, hash 544112048 >>>>>>> 192.168.0.5:90data : 94, hash 253717288 >>>>>>> 192.168.0.5:20data : 95, hash 82340904 >>>>>>> 192.168.1.0:099data : 96, hash 1495879208 >>>>>>> 192.168.0.5:10data : 97, hash 543491482 >>>>>>> 192.168.0.5:90data : 98, hash 1024553895 >>>>>>> 192.168.0.5:50data : 99, hash 1769578442 >>>>>>> 192.168.1.2:113Process finished with exit code 0

  

转载于:https://www.cnblogs.com/Mao-admin/p/10002807.html

你可能感兴趣的文章
关于阿里开发者招聘节 |这5道笔试真题 你会吗!???
查看>>
深入浅出JDBC(四) - Insert与Spring SimpleJdbcInsert
查看>>
C#的异常处理机制
查看>>
Redis学习手册(内存优化)
查看>>
openstack Juno安装——之手动安装
查看>>
解决libmcrypt was not found,无法安装mcrypt
查看>>
常用数据挖掘算法归类
查看>>
QSS学习
查看>>
写给MongoDB开发者的50条建议Tip13
查看>>
Linux 系统管理的基本知识
查看>>
我的友情链接
查看>>
那些年,一起学的Java 7-4
查看>>
我的友情链接
查看>>
vsftp:500 OOPS: could not bind listening IPv4 sock
查看>>
系统架构师职业分析
查看>>
Centos7下安装DB2
查看>>
我的友情链接
查看>>
Linux安装BTCPayServer并设置比特币BTC和Lightning支付网关
查看>>
Python 的 with 语句
查看>>
Docker-1.相关知识+安装+镜像相关操作
查看>>